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ABSTRACT

Large HPC centers spend considerable time supporting software for
thousands of users, but the complexity of HPC software is quickly
outpacing the capabilities of existing software management tools.
Scientific applications require specific versions of compilers, MPI,
and other dependency libraries, so using a single, standard software
stack is infeasible. However, managing many configurations is
difficult because the configuration space is combinatorial in size.

We introduce Spack, a tool used at Lawrence Livermore National
Laboratory to manage this complexity. Spack provides a novel, re-
cursive specification syntax to invoke parametric builds of packages
and dependencies. It allows any number of builds to coexist on
the same system, and it ensures that installed packages can find
their dependencies, regardless of the environment. We show through
real-world use cases that Spack supports diverse and demanding
applications, bringing order to HPC software chaos.

1. INTRODUCTION

The Livermore Computing (LC) facility at Lawrence Livermore
National Laboratory (LLNL) supports around 2,500 users on 25
different clusters, ranging in size from a 1.6 teraflop, 256-core clus-
ter to the 20 petaflop, 1.6 million-core Sequoia machine, currently
ranked second on the Graph500 [4] and third on the Top500 [30].
The simulation software that runs on these machines is very com-
plex; some codes depend on specific versions of over 70 dependency
libraries. They require specific compilers, build options and Mes-
sage Passing Interface (MPI) implementations to achieve the best
performance, and users may run several different codes in the same
environment as part of larger scientific workflows.

To support the diverse needs of applications, system adminis-
trators and developers frequently build, install, and support many
different configurations of math and physics libraries, as well as
other software. Frequently, applications must be rebuilt to fix bugs
and to support new versions of the operating system (OS), MPI
implementation, compiler, and other dependencies. Unfortunately,
building scientific software is notoriously complex, with immature
build systems that are difficult to adapt to new machines [13, 23, 42].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SC ’15, November 15-20, 2015, Austin, TX, USA. LLNL-CONF-675189.
© 2015 ACM. ISBN 978-1-4503-3723-6/15/11...$15.00
DOIL: http://dx.doi.org/10.1145/2807591.2807623

Worse, the space of required builds grows combinatorially with
each new configuration parameter. As a result, LLNL staff spend
countless hours dealing with build and deployment issues.

Existing package management tools automate parts of the build
process [2, 10, 11, 12, 23, 24, 38, 39, 41]. For the most part, they
focus on keeping a single, stable set of packages up to date, and
they do not handle installation of multiple versions or configurations.
Those that do handle multiple configurations typically require that
package files be created for each combination of options [10, 11,
12, 23], leading to a profusion of files and maintenance issues.
Some allow limited forms of composition [11, 12, 23], but their
dependency management is overly rigid, and they burden users with
combinatorial naming and versioning problems.

This paper describes our experiences with the Spack package
manager, which we have developed at LLNL to manage increasing
software complexity. It makes the following contributions:

1. A novel, recursive syntax for concisely specifying constraints
within the large parameter space of HPC packages;

2. A build methodology that ensures packages find their depen-
dencies regardless of users’ environments;

3. Spack: An implementation of these concepts; and
4. Four use cases detailing LLNL’s use of Spack in production.

Our use cases highlight Spack’s ability to manage complex software.
Spack supports rapid composition of package configurations, man-
agement of Python installations, and site-specific build policies. It
automates 36 different build configurations of an LLNL production
code with 46 dependencies. Despite this complexity, Spack’s con-
cretization algorithm for managing constraints runs in seconds, even
for large packages. Spack’s install environment incurs only around
10% build-time overhead compared to a native install.

Spack solves software problems that are pervasive at large, multi-
user HPC centers, and our experiences are relevant to the full range
of HPC facilities. Spack improves operational efficiency by simpli-
fying the build and deployment of bleeding-edge scientific software.

2. COMMON PRACTICE

Meta-build Systems.

Meta-build systems such as Contractor, WAF, and MixDown [3,
15, 16, 32] are related to package managers, but they focus on en-
suring that a single package builds with its dependencies. MixDown
notably provides excellent features for ensuring consistent compiler
flags in a build. However, these systems do not provide facilities to
manage large package repositories or combinatorial versioning.



Traditional Package Managers.

Package managers automate the installation of complex sets of
software packages. Binary package managers such as RPM, yum,
and APT [18, 33, 36] are integrated with most OS distributions, and
they are used to ensure that dependencies are installed before pack-
ages that require them. Anaconda [7, 8], uses the same approach but
is designed to run on top of a host OS. These tools largely solve the
problem of managing a single software stack, which works well for
the baseline OS and drivers, which are common to all applications
on a system. These tools assume that each package has only a single
version, and most install packages in a single, inflexible location.
To install multiple configurations, users must create custom, combi-
natorial naming schemes to avoid conflicts. They typically require
root privileges and do not optimize for specific hardware.

Port systems such as Gentoo, BSD Ports, MacPorts, and Home-
brew [22, 24, 38, 39, 41] build packages from source instead of
installing from a pre-built binary. Most port systems suffer from the
same versioning and naming issues as traditional package managers.
Some allow multiple versions to be installed in the same prefix [22],
but again the burden is on package creators to manage conflicts.
This burden effectively restricts installations to a few configurations.

Virtual Machines and Containers.

Packaging problems arise in HPC because a supercomputer’s
hardware, OS, and file system are shared by many users with dif-
ferent requirements. The classic solution to this problem is to use
virtual machines (VMs) [5, 35, 37] or lightweight virtualization tech-
niques like Linux containers [17, 29]. This model allows each user to
have a personalized environment with its own package manager, and
it has been very successful for servers at cloud data centers. VMs
typically have near-native compute performance but low-level HPC
network drivers still exhibit major performance issues. VMs are
not well supported on many non-Linux operating systems, an issue
for the lightweight kernels of bleeding-edge Blue Gene/Q and Cray
machines. Finally, each VM still uses a traditional package manager,
so running many configurations still requires a large number of VMs.
For facilities, this profusion of VMs is a security concern because it
complicates mandatory patching. Also, managing a large number of
VM environments is tedious for users.

Manual and Semi-automated Installation.

To cope with software diversity, many HPC sites use a combi-
nation of existing package managers and either manual or semi-
automated installation. For the baseline OS, many sites maintain
traditional binary packages using the vendor’s package manager.
LLNL maintains a Linux distribution, CHAOS [26] for this purpose,
which is managed using RPM. The popular ROCKS [40] cluster
distribution uses RPM and Anaconda in a similar fashion. For cus-
tom builds, many sites adhere to detailed naming conventions that
encode information in file system paths. Table 1 shows several sites’
conventions. LLNL uses the APT package manager for installs
in the /usr/local/tools file system and /usr/global/tools for
manual installs. Oak Ridge National Laboratory (ORNL) uses hand
installs but adheres to strict scripting conventions to reproduce each
build [25]. The Texas Advanced Computing Center (TACC) relies
heavily on locally maintained RPMs.

From the conventions in Table 1, we see that most sites use some
combination of architecture, compiler version, package name, pack-
age version, and a custom (up to the author, sometimes encoded)
build identifier. TACC and many other sites also explicitly include
the MPI version in the path. MPI is explicitly called out because it
is one of the most common software packages for HPC. However,
it is only one of many dependencies that go into a build. None of

these naming conventions covers the entire configuration space, and
none has a way to represent, e.g., two builds that are identical save
for the version of a particular dependency library. In our experience
at LLNL, naming conventions like these have not succeeded be-
cause users want more configurations than we can represent with a
practical directory hierarchy. Staff frequently install nonconforming
packages in nonstandard locations with ambiguous names.

Environment Modules and RPATHs.

Diverse software versions not only present problems for build and
installation; they also complicate the runtime environment. When
launched, an executable must determine the location of its depen-
dency libraries, or it will not run. Even worse, it may find the wrong
dependencies and subtly produce incorrect results. Statically linked
binaries do not have this issue, but modern operating systems make
extensive use of dynamic linking. By default, the dynamic loader on
most systems is configured to search only system library paths such
as /1ib, /usr/1lib, and /usr/local/lib. If binaries are installed
in other locations, the user who runs the program must typically add
dependency library paths to LD_LIBRARY_PATH (or a similar envi-
ronment variable) so that the loader can find them. Often, the user
is not the same person who installed the library, and even advanced
users may have difficulty determining which paths to add.

Many HPC sites address this problem using environment modules,
which allow users to “load” and “unload” such settings dynamically
using simple commands. Environment modules emerged in 1991,
and there are many implementations [6, 19, 20, 27, 28]. The most
advanced of these, Lmod [27, 28], provides software hierarchies
that are similar to the naming conventions in Table 1 and allow users
to load a software stack quickly if they know which one is required.

The alternative to per-user environment settings is to embed li-
brary search paths in installed binaries at compile time. When set
this way, the search path is called an RPATH. RPATHs and environ-
ment modules are not mutually exclusive. Modules can still be used
to set variables that are unrelated to linking, such as MANPATH and
PATH. Adding RPATHs still ensures that binaries run correctly, re-
gardless of whether the right module is loaded. LC installs software
with both RPATHs and dotkit [6] modules.

Modern Package Managers.

Recently, a number of HPC package managers have emerged that
manage multi-configuration builds. ORNL uses the Smithy [10]
installation tool. It can generate module files, but it does not provide
any automated dependency management; it only checks whether a
package’s prerequisites have already been installed by the user.

The Nix [11, 12] package manager and OS distribution supports
installation of arbitrarily many software configurations. As at most
HPC sites, it installs each package in a unique prefix but it does not
have a human-readable naming convention. Instead, Nix determines
the prefix by hashing the package file and its dependencies.

The EasyBuild [23] tool is in production use at the University
of Ghent and the Jiilich Supercomputing Center. It allows multiple
versions to be installed at once. Rather than setting RPATHs, it
generates module files to manage the environment, and it is closely
coupled with Lmod [21]. EasyBuild groups the compiler, MPI,
FFT, and BLAS libraries together in a toolchain that can be used
by package files. The grouping provides some composability and
separates compiler flags and MPI concerns from client packages.

HashDist [2] is a meta-build system and package manager for
HPC. Of the existing solutions, it is the most similar to Spack.
Like Nix, it uses cryptographic versioning and stores installations
in unique directories. Both Nix and HashDist use RPATHs in their
packages to ensure that libraries are found correctly at runtime.



[ Site | Naming Convention

LLNL / usr / global / tools / $arch / $package / $version
/ usr / local / tools / $package-$compiler-$build-$version
ORNL [25] / $arch / $package / $version / $build
TACC /Lmod [28] | / $compiler-$comp_version / $mpi / $mpi_version / $package / $version
| Spack default | / $arch / $compiler-$comp_version / $package-$version-$options-$hash |

Table 1: Software organization of various HPC sites.

Gaps in Current Practice.

The flexible cryptographic versioning of Nix and HashDist man-
ages the package and its dependency configuration and can represent
any configuration. However, users cannot easily navigate or query
the installed software. EasyBuild and Smithy generate environment
modules, which supports some querying. Naming schemes used
in existing module systems, however, cannot handle combinatorial
versions, which the Lmod authors call the “matrix problem” [28].

The main limitation of existing tools is the lack of build com-
posability. The full set of package versions is combinatorial, and
arbitrary combinations of compiler, MPI version, build options, and
dependency versions require non-trivial modifications to many pack-
age files. Indeed, the number of package files required for most
existing systems scales with the number of version combinations,
not the number of packages, which quickly becomes unmanageable.
As an example, the EasyBuild system has over 3,300 files for several
permutations of around 600 packages. A slightly different depen-
dency graph requires an entire new package file hierarchy. HashDist
supports composition more robustly but does not have first-class
parameters for versions, compilers, or versioned interfaces. HPC
sites need better ways to parameterize packages so that new builds
can be composed in response to user needs.

3. THE SPACK PACKAGE MANAGER

Based on our experiences at LLNL, we have developed Spack,
the Supercomputing Package manager. Spack is written in Python,
which we chose for its flexibility and its increasing use in HPC.
Like prior systems, Spack supports an arbitrary number of software
installations, and like Nix it can identify them with hashes. Unlike
any prior system, Spack provides a concise language to specify and
manage the combinatorial space of HPC software configurations.
Spack provides the following unique features:

1. Composable packages, explicitly parameterized by version,
platform, compiler, options, and dependencies.

2. A novel, recursive spec syntax for dependency graphs and
constraints, which aids in managing the build parameter space.

3. Versioned virtual dependencies to handle versioned, ABI-
incompatible interfaces like MPI.

4. A novel concretization process that translates an abstract
build specification into a full, concrete build specification.

5. A build environment that uses compiler wrappers to enforce
build consistency and simplify package writing.

3.1 Packages

In Spack, packages are Python scripts that build software artifacts.
Each package is a class that extends a generic Package base class.
Package implements the bulk of the build process, but subclasses
provide their own install method to handle the specifics of par-
ticular packages. The subclass does not have to manage the install
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class Mpileaks(Package):
"""Tool to detect and report leaked MPI objects."""

homepage = "https://github.com/hpc/mpileaks”
url = homepage + "/releases/download/v1.0/mpileaks-1.0.tar.gz"

version('1.0",
version('1.1",

'8838c574b39202a57d7c2d68692718aa")
'4282eddb0@8ad8d36df15b06d4be38bcb ')

depends_on('mpi')
depends_on('callpath')

def install(self, spec, prefix):
configure("--prefix=" + prefix,
"--with-callpath=" + spec['callpath'].prefix)
make ()
make("install")

Figure 1: Spack package for the mpileaks tool.

location. Rather, Spack passes the install method a prefix pa-
rameter. The package implementer must ensure that the install
function installs the package into the prefix, but Spack ensures
that prefix is computed so that it is unique for every configuration
of a package. To simplify package implementation further, Spack
implements an embedded domain-specific language (DSL). The
DSL provides directives, such as depends_on, version, patch,
and provides, that add metadata to the package class.

Figure 1 shows the package for mpileaks, a tool developed at
LLNL to find un-released MPI handle objects in parallel programs.
The MpiLeaks class provides simple metadata on lines 2-5: a text
description, a homepage, and a download URL. Two version di-
rectives on lines 7-8 identify known versions and provide MD5
checksums to verify downloads. The two depends_on directives
on lines 10-11 indicate prerequisite packages that must be installed
before mpileaks. Last, the install method on line 13 contains the
commands for building. Spack’s DSL allows shell commands to
be invoked as Python functions, and the install method invokes
configure, make, and make install as a shell script would.

3.2 Spack Specs

Using the simple script in Figure 1, Spack can build many dif-
ferent versions and configurations of the mpileaks package. In
traditional port systems, package code is structured to build a single
version of a package, but in Spack, each package file is a template
that can be configured and built in many different ways, according
to a set of parameters. Spack calls a single build configuration a
spec. Spack communicates dependencies and parameters to package
authors using the spec argument of the install method.

3.2.1 Structure

To understand specs, consider the mpileaks package structure.
Metadata in the Mpileaks class (e.g., version or depends_on) de-
scribe its relationships with other packages. The tool has two direct
dependencies: the callpath library and mpi. Spack recursively
inspects the class definitions for each dependency and constructs a
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graph of their relationships. The result is a directed, acyclic graph
(DAG)." To guarantee a consistent build and to avoid Application
Binary Interface (ABI) incompatibility, we construct the DAG with
only one version of each package. Thus, while Spack can install ar-
bitrarily many configurations of any package, no two configurations
of the same package will ever appear in the same build DAG.

DAGs for mpileaks are shown in Figure 2. Each node represents
a package, and each package has five configuration parameters that
control how it will be built: 1) the package version, 2) the compiler
with which to build, 3) the compiler version, 4) named compile-time
build options, or variants, and 5) the target architecture.

3.2.2  Configuration Complexity

A spec DAG has many degrees of freedom, and users cannot
reasonably be expected to understand or to specify all of them. In
our experience at LLNL, the typical user only cares about a small
number of build constraints (if any), and does not know enough to
specify the rest. For example, a user may know that a certain version
of a library like boost [1] is required, but only cares that other build
parameters are set so that the build will succeed. Configuration
complexity makes the HPC software ecosystem difficult to manage:
too many parameters exist to specify them all. However, the known
and important ones often provide detailed build constraints. Thus,
we have two competing concerns. We need the ability to specify
details without having to remember all of them.

3.2.3 Spec Syntax

We have developed a syntax for specs that allows users to spec-
ify only constraints that matter to them. Our syntax can represent
DAGs concisely enough for command line use. The spec syntax is
recursively defined to allow users to specify parameters on depen-
dencies as well as on the root of the DAG. Figure 3 shows the EBNF
grammar through which Spack flexibly supports constraints.

We begin with a simple example. Consider the case where a user
wants to install the mpileaks package, but knows nothing about its
structure. To install the package, the user invokes spack install:

$ spack install mpileaks

Here, mpileaks is the simplest possible spec—a single identifier.
Spack converts it into the DAG shown in Figure 2a. Note that
even though the spec contains no dependency information, it is still

!Spack currently disallows circular dependencies.

(spec) == (id) | (constraints) |

(constraints) u= { ‘@ (version-list) | ‘+’ (variant)
| =’ {varianty | *~ (variant)
| ‘%" {compiler) | ‘=" {(architecture) }
[ (dep-list) |
(dep-list) = { N (spec) }
(version-list) = (version) | { ¢, (version) } |
(version) = (id) | (id) ‘> | 27 (id) | (id) ‘2’ {id)
(compiler) = (id) | {version-list) |

(variant) (id)
(id)
(id) == [A-Za-z0-9_|[A-Za-z0-9_.-|*

(architecture)

Figure 3: EBNF grammar for spec expressions.

converted to a full DAG, based on directives supplied in package
files. Since the spec does not constrain the nodes, Spack has leeway
when building the package, and we say that it is unconstrained.
However, a user who wants a specific mpileaks version can request
it with a version constraint after the package name:

$ spack install mpileaks@2.3

Figure 2b shows that the specific version constraint is placed on the
mpileaks node in the DAG, which otherwise remains unconstrained.
A user who only requires a particular minimum version could use
version range syntax and write @2.3:. Likewise, @2.3:2.5.6
would specify a version between 2.3 and 2.5.6. In these cases,
the user can save time if Spack already has a version installed that
satisfies the spec — Spack will use the previously-built installation
instead of building a new one.
Figure 2¢ shows the recursive nature of the spec syntax:

$ spack install mpileaks@2.3 “*callpath@l.0@+debug *libelf@o.8.11

The caret (*) denotes constraints for a particular dependency. The
DAG now has version constraints on callpath and 1ibelf, and
the user has requested the debug variant of the callpath library.

Recall that Spack guarantees that only a single version of any
package occurs in a spec. Within a spec, each dependency can be
uniquely identified by its package name alone. Therefore, the user
does not need to consider DAG connectivity to add constraints but
instead must only know that mpileaks depends on callpath. Thus,
dependency constraints can appear in an arbitrary order.

Table 2 shows further examples of specs, ranging from simple
to complex. These examples show how Spack’s constraint notation
covers the rest of the HPC package parameter space.

Versions. Version constraints are denoted with @. Versions can
be precise (@2.5.1) or denote a range (@2.5:4.4), which may be
open-ended (@2.5:). The package in Figure 1 lists two “safe” ver-
sions with checksums, but in our experience users frequently want
bleeding-edge versions, and package managers often lag behind the
latest releases. Spack can extrapolate URLs from versions, using the
package’s url attribute as a model.” If the user requests a specific
version on the command line that is unknown to Spack, Spack will
attempt to fetch and to install it. Spack uses the same model to
scrape webpages and to find new versions as they become available.

Compilers. With a compiler constraint (shown on line 3) the
user simply adds % followed by its name, with an optional compiler
version specifier. Spack compiler names like gcc refer to the full
compiler foolchain, i.e., the C, C++, and Fortran 77 and 90 compil-
ers. Spack can auto-detect compiler toolchains in the user’s PATH,
or they can be registered manually through a configuration file.

This works for packages with consistently named URLs.
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[ [ Spec | Meaning

1 | mpileaks mpileaks package, no constraints.

2 | mpileaks@1.1.2 mpileaks package, version 1.1.2.

3 | mpileaks@1.1.2 %gcc mpileaks package, version 1.1.2, built with gcc at the default version.

4 | mpileaks@1.1.2 %intel@14.1 +debug mpileaks package, version 1.1.2, built with Intel compiler version 14.1,

with the “debug” build option.

5 | mpileaks@1.1.2 =bgq mpileaks package, version 1.1.2, built for the Blue Gene/Q platform (BG/Q).

6 | mpileaks@1.1.2 “mvapich2@1.9 mpileaks package version 1.1.2, using mvapich2 version 1.9 for MPI.

7 | mpileaks @1.2:1.4 %gcc@4.7.5 -debug =bgq mpileaks at any version between 1.2 and 1.4 (inclusive), built with gcc 4.7.5, without the
*callpath @1.1 %gcc@4.7.2 debug option, for BG/Q, linked with callpath version 1.1 and building callpath with gcc
*openmpi @1.4.7 version 4.7.2, linked with openmpi version 1.4.7.

Table 2: Spack build spec syntax examples and their meaning.

def install(self, spec, prefix): # default build uses cmake
with working_dir('spack-build', create=True):
cmake('.."', *std_cmake_args)
make ()
make("install")
@when('@:8.1") # <= 8.1 uses autotools
def install(self, spec, prefix):
configure("--prefix=" + prefix)
make ()
make("install™)

Figure 4: Specialized install method in Dyninst.

Variants. To handle options like compiler flags or optional com-
ponents, specs can have named flags, or variants. Variants are
associated with the package, so the mpileaks package implementer
must explicitly handle cases where debug is enabled (+debug) or
disabled (-debug or ~debug). Names simplify versioning and pre-
vent the configuration space from becoming too large. For example,
including detailed compiler flags in spec syntax would violate our
goal of conciseness, but known sets of flags can simply be named.

Cross-compilation. To support cross-compilation, specs can
include the system architecture (line 5). Platforms begin with =
and take names like linux-ppc64 or bgq. They are specified per-
package. This mechanism allows front-end tools to depend on their
back-end measurement libraries with a different architecture on
cross-compiled machines.

3.2.4 Constraints in Packages

So far, we have shown examples of specs used to request con-
straints from the command line, when spack install is invoked.
However, the user is not the only source of constraints. Applica-
tions may require specific versions of dependencies. Often, these
constraints should be specified in a package file. For example, the
ROSE compiler [34] only builds with a certain version of the boost
library. The depends_on() directives in Figure 1 contain simple
package names. However, a package name is also a spec, and the
same constraint syntax usable from the command line can be applied
inside directives. So, we can simply write:

depends_on('boost@1.54.0")

This constraint will be incorporated into the initial DAG node gener-
ated from the ROSE package. Dependencies can also be conditional.
For example, the ROSE package builds with different versions of
boost, depending on the compiler version. So, directives also accept
spec syntax as a predicate in an optional when parameter:

depends_on('boost@1.47.0", when="%gcc@:4"')
depends_on('boost@1.54.0", when='%gcc@5: ")

The same notation is used to build optionally with libraries like MPI:
depends_on('mpi', when="'+mpi'")

and to ensure that specific patches are applied to Python source code
when it is built on Blue Gene/Q, with different compilers:

patch('python-bgg-xlc.patch', when="=bgq%x1")
patch('python-bgg-clang.patch', when='=bgg%clang')

Constraints in the when clause are matched against the package spec.
Outside of directives, constraints can also be tested directly on the
spec object in the install method:

def install(self, spec, prefix):
if spec.satisfies('%gcc'):
# Handle gcc
elif spec.satisfies('%x1'):
# Handle XL compilers

3.2.5 Build Specialization

In our experience maintaining packages at LLNL, we often must
change entire package build scripts due to large changes in the way
certain packages build. These changes are cumbersome, particularly
since we often must maintain both the old and new version of a
build script, as some users rely on the old version.

Spack provides functionality that allows Python functions to have
multiple definitions, each specialized for particular configurations
of the package. This capability allows us to have two separate im-
plementations of install or any method in a package class, as
Figure 4 shows for the Dyninst package. The @when directive is
a Python decorator: a higher order function that takes a function
definition as a parameter and returns a new function to replace it. We
replace the function with a callable multi-function dispatch object,
and we integrate the predicate check into the function dispatch mech-
anism. The @when condition is true when Dyninst is at version 8.1
or lower, in which case the package will use the configure-based
build. By default if no predicate matches, install will use the de-
fault CMake-based implementation. The simple @when annotation
allows us to maintain our old build code alongside the new version
without accumulating complex logic in a single install function.

3.3 Versioned Virtual Dependencies

Many libraries share a common interface and can be interchanged
within a build. The archetypal examples in HPC are MPI libraries,
which has several open source (e.g., MPICH, OpenMPI, and MVA-
PICH) and vendor-specific implementations. An application that can
be built with one MPI implementation can generally be built with
another. Another example is the Basic Linear Algebra Subroutines
(BLAS), which has many fungible implementations (e.g., ATLAS,
LAPACK-BLAS, and MKL).

Neither MPI nor BLAS has a standard ABI, so applications cannot
simply be re-linked with a new version. They must be recompiled
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# mpi dependents
class Mpileaks(Package):
depends_on('mpi')

# providers of mpi

class Mvapich2(Package):
provides('mpi@:2.2', when='@1.9")
provides('mpi@:3.0', when='@2.0")

L. class Gerris(Package):

class Mpich(Package): depends_on('mpi@2: ")
provides('mpi@:3', when='@3:") .

provides('mpi@:1', when='@1:")

Figure 5: Virtual dependencies.

and reinstalled. At LLNL, we must frequently build tools with many
versions of MPI to support the many different applications that run
at our center. Complicating matters, the MPI interface is versioned,
and some packages need later versions of MPI to run correctly.
Often, MPI implementation versions do not correspond obviously
to MPI interface versions, and determining the right version of MPI
to pair with an application can be tedious and tricky.

To allow rapid composition of libraries using an interface, Spack
supports virtual dependencies. A virtual dependency is an abstract
name that represents a library interface (or capability) instead of
a library implementation. Packages that need this interface do
need not depend on a specific implementation; they can depend
on the virtual name, for which the user or Spack can select an
implementation at build time. Other package managers support the
notion of virtual dependencies, but Spack adds versioning to its
interfaces, which directly supports concepts like MPI versions and
BLAS levels. Spack handles the details of managing and checking
complex versioning constraints.

Figure 5 shows how packages provide virtual interfaces in Spack.
The spec syntax concisely associates ranges of mpi versions for the
mvapich2 and mpich packages. The mpileaks package requires
mpi, but it does not constrain the version. Any version of mvapich2
or mpich could be used to to satisfy the mpi constraint. The Gerris
computational fluid dynamics library, however, needs MPI version 2
or higher. So any version except mpich 1.x could be used to satisfy
the constrained dependency.

3.4 Concretization

We have discussed Spack’s internal software DAG model, and we
have shown how the spec syntax can be used to specify a partially
constrained software DAG. This DAG is abstract, as it could poten-
tially describe more than one software configuration. Before Spack
builds a spec, it must ensure the following conditions:

1. No package in the spec DAG is missing dependencies;
2. No package in the spec DAG is virtual;
3. All parameters are set for all packages in the DAG.

If a spec meets these criteria then it is concrete. Concretization
is the central component of Spack’s build process that allows it to
reduce an unconstrained abstract description to a concrete build.

callpathel.o
gcce4.7.3
=Tinux-ppc64

Figure 7: Concretized spec from Figure 2a.

Figure 6 shows Spack’s concretization algorithm. The process
starts when a user invokes spack install and requests that a spec
be built. Spack converts the spec to an abstract DAG. It then builds
a separate spec DAG for any constraints encoded by directives in
package files. Spack intersects the constraints of the two DAGs
package by package, and it checks each parameter for inconsisten-
cies. Inconsistencies can arise if, for example, the user inadvertently
requests two versions of the same package, or if a package file de-
pends on a different version than the user requested. Likewise, if
the package and the user specified different compilers, variants, or
platforms for particular packages, Spack will stop and notify the
user of the conflict. If the user or package specifies version ranges,
they are intersected, and if the ranges do not overlap, Spack raises
an error. When the intersection succeeds, Spack has a single DAG
with the merged constraints of the user and the package files.

The next part of the process is iterative. If any node is a virtual
dependency, Spack replaces it with a suitable interface provider by
building a reverse index from virtual packages to providers using
the provides when directives (Section 3.3). If multiple providers
satisfy the virtual spec’s constraints, Spack consults site and user
policies to select the “best” possible provider. The selected provider
may itself have virtual dependencies, so this process is repeated until
the DAG has no more virtual packages.

With the now non-virtual DAG, Spack again consults site and
user preferences for variants, compilers, and versions to resolve any
remaining abstract nodes. Adding a variant like +mpi may cause
a package to depend on more libraries (as in Section 3.2.4). The
concretization algorithm evaluates conditions from when clauses on
the DAG; if they result in new libraries or other changes, the cycle
begins again. Spack currently avoids an exhaustive search by using
a greedy algorithm. It will not backtrack to try other options if its
first policy choice leads to an inconsistency. Rather, it will raise
an error and the user must resolve the issue by being more explicit.
The user might toggle a variant or force the build to use a particular
MPI implementation by supplying *openmpi or *mpich. We leave
automatic constraint space exploration for future work.

On completion, the concretization outputs a fully concrete spec
DAG. Figure 7 shows a concrete DAG with architectures, compil-
ers, versions, variants, and all dependencies resolved. This fulfills
Spack’s guarantees. At install time, Spack constructs a package
object for each node in the spec DAG and traverses the DAG in a
bottom-up fashion. At each node, it invokes the package’s install
method. For the spec parameter to install, it passes a sub-DAG
rooted at current node (also a concrete spec). Package authors must
query the spec in install to handle different configurations.
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Figure 8: Concretization running time for 245 packages.

3.4.1 Concretization Runtime

Figure 8 shows the running time of concretization vs. package
DAG size in nodes. We generated this plot by running concretize
on all of Spack’s 245 packages. We tested on three LLNL cluster
front-end nodes: a 2.3GHz Intel Haswell node and a 2.6 GHz Intel
Sandy Bridge node on our Linux clusters, and the 3.6 GHz IBM
Power7 front-end node of a Blue Gene/Q system. Each point is the
average of 10 trials. For all but the 10 largest packages, concretiza-
tion takes less than 2 seconds on all machines. For larger DAGs,
we begin to see a quadratic trend, but even for 50 nodes or more,
concretization takes less than 4 seconds on the Haswell machine
and 9 seconds on the Power7. We expect this performance from
our greedy, fixed-point method, and it is sufficient for the packages
we have built so far. Its running time is insignificant compared
to the build time of most packages, and it only executes once per
build. More generally, concretization is an instance of the constraint
satisfaction problem, which is NP-complete. While concretization
could become more costly, we do not expect to see packages with
thousands of dependencies in the near future. We do not expect it to
become a bottleneck, even if we use a full constraint solver.

3.4.2 Shared sub-DAGs

We mentioned in Section 3.1 that each unique configuration is
guaranteed a unique install prefix. Spack uses the concrete spec to
generate a unique path, shown in Table 1. To prevent the directory
name from growing too long, Spack uses a SHA hash of depen-
dencies’ specs as the last directory component. However, Spack
does not rebuild every library for each new configuration. If two
configurations share a sub-DAG, then Spack reuses the sub-DAG’s
configuration. Figure 9 shows how the dyninst sub-DAG is used
for both the mpich and openmpi builds of mpileaks.

3.4.3 Reproducibility

For reproducibility, and to preserve provenance, Spack stores a
number of files in the installation directory that document how the
installed package was built. These include the package. py file used
to build, a build log that contains output and error messages, and a
file that contains the complete concrete spec for the package and its
dependencies. The spec file can be used later to reproduce the build,
even if concretization preferences have changed.

3.4.4 Site Policies and Build Complexity

Our experience with manual installs helped us understand that
much of the complexity of building HPC software comes from the
size of the build parameter space. As previously mentioned, typical
users only care about a few parameters. The rest add unneeded
complexity. When building manually, LLNL staff tend to make
arbitrary choices about the secondary build parameters, or they add
logic to build scripts to make these choices. Manually built software
is generally not installed in a consistent manner.

Concretization provides two benefits. First, it allows users and
staff to request builds with a minimal spec expression, while still
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Figure 9: mpileaks built with mpich, then openmpi.

providing a mechanism for the site and the user to make consistent,
repeatable choices for other build parameters. For example, the site
or the user can set default versions to use for any library that is not
specified explicitly. Second, concretization reduces the burden of
packaging software, because package authors do not have to make
these decisions. Packages do not need to contain complicated checks,
or to be overly specific about versions. Other multi-configuration
systems like Nix, EasyBuild, and HashDist require the package
author to write a mostly concrete build spec in advance. This re-
quirement puts undue burden on the package author, and it makes
the task of changing site policies within a software stack difficult.
Spack separates these concerns.

3.5 Installation Environment

Spack is designed to build a consistent HPC stack for our en-
vironment, and reproducible builds are one of our design goals.
Experience at LLNL has shown that reproducing a build manually is
vexingly difficult. Many packages have a profusion of build options.
Specifying them correctly often requires tedious experimentation
due to lack of build standards, as well as the diversity of HPC envi-
ronments. For example, in some packages that depend on the Silo
library, the --with-silo parameter takes a path to Silo’s installa-
tion prefix. In others, it takes the include and 1ib subdirectories,
separated by a comma. The install method in Spack’s packages
encodes precise build incantations for later reuse.

3.5.1 Environment Isolation

Inconsistencies arise not only from building manually but also
due to differences between the package installation environment and
the user environment. For example, LLNL performance tools use
two versions of the 1ibelf library. One is distributed with RedHat
Linux, while the other is publicly available. They have the same
API but an incompatible ABI. Specifying the wrong version at build
time has caused many unexpected crashes at runtime.

Spack manages the build environment by running each call to
install in its own process. It also sets PATH, PKG_CONFIG_PATH,
CMAKE_PREFIX_PATH, and LD_LIBRARY_PATH to include the depen-
dencies of the current build. Build systems commonly use these
variables to locate dependencies, and setting them helps to ensure
that the correct libraries are detected. Using a separate process also
gives package authors free reign to set build-specific environment
variables without interfering with other packages.

3.5.2 Compiler Wrappers and RPATHs

Finding dependencies at build time is not the only obstacle to
reproducible behavior. As mentioned in Section 2, binaries must
be able to find dependency libraries at runtime. One of the most
common user errors at LLNL is improper library configuration.
Users frequently do not know the libraries with which a package was
built, and constructing a suitable LD_LIBRARY_PATH for a package
that was built by someone else is difficult. To reduce the number
of support calls that we receive, we typically add RPATHs to public
software installations, so that paths to dependencies are embedded
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in binaries. Thus, users do not need to know details of dependencies
to run installed software correctly.

Spack manages RPATHs and other build policies with compiler
wrappers. In each isolated install environment, Spack sets the
environment variables CC, CXX, F77, and FC to point to its compiler
wrapper scripts. These variables are used by most build systems to
select C, C++, and Fortran compilers, so they are typically picked up
automatically.> When run, the wrappers insert include (-1), library
(-L), and RPATH (-W1, -rpath or similar) flags into the argument
list. These point to the include and 1ib directories of dependency
installations, where needed headers and libraries are located. The
wrappers invoke the real compiler with the modified arguments.

Spack’s compiler wrappers have several benefits. First, they allow
Spack to switch compilers transparently in most builds, which is how
we implement compiler options like %gcc. Second, they enforce the
use of RPATHs in installed binaries, which allows applications that
Spack builds to run correctly regardless of the environment. Third,
because compiler wrappers add header and library search paths for
dependencies, header and library detection tests that most build sys-
tems use succeed without using special arguments for nonstandard
locations. configure commands in Spack’s install function can
have fewer arguments, and can be written as for system installs,
which reduces complexity for package maintainers and helps to en-
sure consistent, reproducible build policies across packages. Finally,
because Spack controls the wrappers, package authors can program-
matically filter the compiler flags used by build systems, which
facilitates porting to bleeding-edge platforms or new compilers.

3.5.3 Build Overhead

Argument parsing and indirection cause Spack’s compiler wrap-
pers to incur a small but noticeable performance overhead. Figure 10
shows build times with and without compiler wrappers for seven
different packages, and Figure 11 shows the corresponding overhead
as a percentage of the wrapper-less runtime. Dyninst and LAPACK
use CMake to build, and the rest use autotools. We ran each build
three times on an Intel Sandy Bridge cluster node, and we report the
average. In the case of dyninst, the overhead is negligible (-0.4%),
but it is as high as 12.3% for shorter builds, like mpileaks.

To increase build speed, by default Spack runs each install
method in the default temporary directory, which is a fast, locally-

31f builds do not respect CC, CXX, FC, or F77, wrappers can be added
as arguments or inserted into Makefiles by install.

patch('patch.gpeftools2.4_xlc', when='@2.4 %xlc")

def install(self, spec, prefix):
if spec.architecture == 'bgq' and self.compiler.satisfies('xlc'):

configure("--prefix=" + prefix, "LDFLAGS=-gnostaticlink")
elif spec.architecture == 'bgq':

configure(”--prefix=" + prefix, "LDFLAGS=-dynamic")
else:

configure(”--prefix=" + prefix)

make ()
make("install")

Figure 12: Simplified install routine for gperftools.

mounted file system on most cluster nodes. In our experience, many
users build manually in their home directories out of habit. At most
sites, home directories are remotely mounted volumes (e.g., NFS).
To compare Spack builds with typical manual builds, we timed the
same seven builds using NFS. Figure 11 shows that building this
way can be as much as 62.7% slower than using a temporary file
system and 33% slower on average. We therefore expect many users
to notice a speedup when Spack uses temporary space to build.

3.5.4 Environment Module Integration

In addition to managing the build-time environment, Spack can
assist in managing the run-time environment. A package may need
environment variables like PATH, MANPATH, or PKG_CONFIG_PATH
set before it can be used. As discussed in Section 2, many sites rely
on environment modules to setup the runtime environment. Spack
can automatically create simple dotkit [6] and Module configuration
files for its packages, allowing users to setup their runtime environ-
ment using familiar systems. While Spack packages do not need
LD_LIBRARY_PATH to run, we set it in our generated module files
as well, because it can be used by build systems to find libraries,
as well as by dependent packages that do not use RPATH. Future
versions of Spack may also allow the creation of Lmod [27] hierar-
chies. Spack’s rich dependency information would allow automatic
generation of such hierarchies.

4. USE CASES

We have recently begun using Spack in production at Livermore
Computing (LC). We have already outlined a number of the experi-
ences that drove us to develop Spack. In this section, we describe
real-world use cases that Spack has addressed. In some cases, Spack
had to be adapted to meet production needs, and we describe how
its flexibility has allowed us to put together solutions quickly.

4.1 Combinatorial Naming

Gperftools is a suite of tools from Google that has gained popu-
larity among developers for its high-performance thread-safe heap
and its lightweight profilers. Unfortunately, two issues made it diffi-
cult to maintain gperftools installations at LC. First, gperftools
is a C++ library. Since C++ does not define a standard ABI,
gperftools must be rebuilt with each compiler and compiler ver-
sion used by client applications. Second, building gperftools on
bleeding-edge architectures (such as Blue Gene/Q) requires patches
and complicated configure lines that change with each compiler. One
application team tried to maintain their own builds of gperftools,
but the maintenance burden soon became too great.

Spack presented a solution to both problems. Package administra-
tors can use Spack to maintain a central install of gperftools across
combinations of compilers and compiler versions easily. Spack’s
gperftools package also serves as a central institutional knowledge



repository, as its package files encode the patches and configure lines
required for each platform and compiler combination. Figure 12
illustrates per-compiler and platform build rules with a simplified
version of the install routine for gperftools. The package applies a
patch if gperftools 2.4 is built with the XL compiler, and it selects
the correct configure line based on the spec’s platform and compiler.
LC’s mpileaks tool, which has been a running example in this
paper, has an even larger configuration space than gperftools.
It must be built for different compilers, compiler versions, MPI
implementations, and MPI versions. As with gperftools, we have
been able to install many different configurations of mpileaks using
Spack. Moreover, Spack’s virtual dependency system allows us to
compose a new mpileaks build quickly when a new MPI library is
deployed at LC, without modifying the mpileaks package itself.

4.2 Support for Interpreted Languages

Python is becoming increasingly popular for HPC applications,
due to its flexibility as a language and its excellent support for calling
into fast, compiled numerical libraries. Python is an interpreted
language, but one can use it as a friendlier interface to compiled
libraries like FFTW, ATLAS, and other linear algebra libraries.
Many LLNL code teams use Python in this manner. LC supports
Python installations for several application teams. Maintaining
these repositories has grown increasingly complex over time. The
problems are similar to those that drove us to create Spack: different
teams want different Python libraries with different configurations.

Existing Python package managers either do not support building
from source [7, 8], or they are language-specific [14]. None handles
multi-configuration builds. More glaringly, Python extensions are
usually installed into the Python interpreter’s prefix, which makes it
impossible to install multiple versions.* Installing each extension
in its own prefix enables combinatorial versioning, but it requires
users to add packages to the PYTHONPATH variable at runtime.

Per Spack’s design philosophy, we wanted a way to manage many
different versions easily, but also to provide a baseline set of ex-
tensions without requiring environment settings. To support this
mode of operation, we added the concept of extension packages to
Spack. Python modules use the extends('python') directive in-
stead of depends_on('python'). Each module installs into its own
prefix like any other package, and each module depends on a par-
ticular Python installation. However extensions can be activated
or deactivated within the dependent Python installation. The
activate operation symbolically links each file in the extension
prefix into the Python installation prefix, as if it were installed di-
rectly. If any file conflict would arise from this operation, activate
fails. Similarly, the deactivate operation removes the symbolic
links and restores the Python installation to its pristine state.

Additional complications arose because many Python packages
install their own package manager if they do not find one in the
Python installation. Also, Python packages use a wide range of
mechanisms to add themselves to the interpreter’s default path,
some of which conflict. We modified Spack so that extendable
packages, like Python, can supply custom code in the package
file that specializes activate and deactivate for the particular
package. For Python, this feature merges conflicting files during
activation. Overall, Python extensions can be installed automatically
in their own prefixes, and they can be composed with a wide range of
bleeding-edge libraries that other package managers do not handle.

Spack essentially implements a “meta package-manager” for each
Python instance, which coexists with Spack’s normal installation
model. This mechanism efficiently supports application teams, for

*setuptools has support for multiple versions via pkg_resources,
but this requires modifications to client code.

whom we can now rapidly construct custom Python installations.
We have also reduced the time that LC staff spend installing Python
modules. Because Spack packages can extend activation and de-
activation mechanisms, this design could also be used with other
languages with similar extension models, such as R, Ruby, or Lua.

4.3 User and Site Policies

Spack makes it easy to create and to organize package installa-
tions, but it must also be easy for end-users to find and use packages
on an HPC system. Different end-users have different expectations
about how packages should be built and installed, and at LLNL
those expectations are shaped by years of site policies, personal pref-
erences, and lingering legacy decisions originally made on a DEC
VAX. Spack provides mechanisms that allow users to customize it
for the needs of particular sites and users.

4.3.1 Package Views

While Spack can easily create many installations of a package
like mpileaks, end-users may find Spack’s directory layout confus-
ing, and they may not be able to find libraries intuitively. Spack
installs packages into paths based on concretized specs, which is
ideal for maintaining multiple package installations. However, end-
users would find these paths difficult to navigate. For example, an
mpileaks installation prefix might be:

spack/opt/linux-x86_64/gcc-4.9.2/mpileaks-1.0-db465029

As discussed in Section 3.5.4, environment modules are com-
monly used on HPC systems to solve this problem, and Spack allows
the package author to create environment modules automatically
for packages that Spack installs. Even when modules are available,
many users still navigate the file system to access packages.

Spack allows the creation of views, which are symbolic-link based
directory layouts of packages. Views provide a human-readable di-
rectory layout that can be adapted to match legacy directory layouts
on which users rely. For example, the above mpileaks package may
have a view that creates a link in /opt/mpileaks-1.0-openmpi to
the Spack installation of mpileaks. The same package install may
be referenced by multiple links and views, so the above package
could also be linked from a more generic /opt/mpileaks-openmpi
link. This reuse supports users who always want to use the latest
version. Views can also be used to create symbolic links to specific
executables or libraries in an install, so a Spack-built gcc@4.9.2
install may have a view that creates links from /bin/gcc49 and
/bin/g++49 to the appropriate gcc and g++ executables.

Views are configured using configuration files, which can be set
up at the site or user level. For each package or set of packages, the
configuration file contains rules that describe the links that should
point into that package. The link names can be parameterized.
For example, the above mpileaks symbolic link might have been
created by a rule like:

/opt/${PACKAGE }-${VERSION}-${MPINAME }

On installation and removal, links are automatically created, deleted,
or updated according to these rules.

Spack’s views are a projection from points in a high-dimensional
space (concretized specs, which fully specify all parameters) to
points in a lower-dimensional space (link names, which may only
contain a few parameters). Several installations may map to the
same link. For example, the above mpileaks link could point to
an mpileaks compiled with gcc or icc—the compiler parameter
is not part of the link. To keep package installations consistent and
reproducible, Spack has a well-defined mechanism for resolving
conflicting links; it uses a combination of internal default policies



and user- or site-defined policies to define an order of preference
for different parameters. By default, Spack prefers newer versions
of packages compiled with newer compilers to older packages built
with older compilers. It has a well-defined, but not necessarily
meaningful, order of preference for deciding between MPI imple-
mentations and different compilers. The default policies can be
overridden in configuration files, by either users or by sites. For
example, at one site users may typically use the Intel compiler,
but some users also use the system’s default gcc@4.4.7. These
preferences could be stated by adding:

compiler_order = icc,gcc@4.4.7

to the site’s configuration file, which would cause the ambiguous
mpileaks link to point to an installation compiled with icc. Any
compiler not in the compiler_order setting is less preferred than
those explicitly provided. In a similar manner, Spack can be con-
figured to give specific package configurations priority over others,
which can be useful with a new, unstable and untested version.

4.3.2  External Package Repositories

By default, Spack stores its package files in a mainline repository
that is present when users first run Spack. At many sites, packages
may build sensitive, proprietary software, or they may have patches
that are not useful outside of a certain company or organization.
Putting this type of code back into a public repository does not often
make sense and, if it makes the mainline less stable, it can actually
make sharing code between sites more difficult.

To support our own private packages, and to support those of
LLNL code teams, Spack allows the creation of site-specific vari-
ants of packages. Users can specify additional search directories for
finding additional Package classes via configuration files. The addi-
tional packages are like the mpileaks package shown in Figure 1.
However, the extension packages can extend from not only Package,
but also any of Spack’s built-in packages. Custom packages can
inherit from and replace Spack’s default packages, so other sites
can either tweak or completely replace Spack’s build recipes. For
example, a site can write a local Python class that inherits from
Spack’s base class. The local class may simply add configure flags
to Spack’s version, while leaving the dependencies and most of the
build instructions from its parent class. For reproducibility, Spack
also tracks the Package class that drove a specific build.

4.4 The ARES Multi-physics Code

For our final use case, we describe our experiences using Spack
to build ARES. ARES [9, 31]is a 1, 2 and 3-dimensional radiation
hydrodynamics code, developed for production use at LLNL. It can
run both small, serial and large, massively parallel jobs. ARES
is used primarily in munitions modeling and inertial confinement
fusion simulations. At LLNL, it runs on commodity Linux clusters
and on Blue Gene/Q systems. It also runs on the Cielo Cray XE6
system at Los Alamos National Laboratory (LANL), and it is be-
ing ported to LANL’s forthcoming Trinity Cray XC30 machine on
Trinitite, a smaller version of the full system. The Trinity machine
will consist of two partitions; one using Intel Haswell processors
and another using Intel Knights Landing processors. Currently, only
the Haswell partition is deployed on Trinitite.

ARES comprises 47 packages, with complex dependency rela-
tionships. Figure 13 shows the DAG for the current production
configuration of ARES. At the top is ARES itself. ARES depends
on 11 LLNL physics packages, 4 LLNL math/meshing libraries, and
8 LLNL utility libraries. The utility libraries handle tasks including
logging, I/0O, and performance measurement. ARES also uses 23 ex-
ternal software packages, including MPI, BLAS, Python, and many

Linux BG/Q Cray XE6
MVAPICH | MVAPICH2 | OpenMPI | BG/Q MPI | Cray MPI
GcC CPLD CPLD
Intel 14 CPLD
Intel 15 CPLD D
PGI D CPLD cCLD
Clang CPLD cLD
XL CPLD

Table 3: Configurations of ARES built with Spack:
(C)urrent and (P)revious production, (L)ite, and (D)evelopment).

other libraries. Together, these packages are written in a diverse set
of languages including C, C++, Fortran, Python and tcl.

We have configured Spack to build ARES with external MPI
implementations, depending on the host system. This configuration
exploits vendor- or site-supplied MPI installations that often use
host-specific, optimized network drivers. MPI is thus shown as
a virtual dependency in the figure. ARES builds its own Python
version, so that it can run on machines where Python is not well
supported, like Blue Gene/Q. Specifically, for Blue Gene/Q, it builds
Python 2.7.9, which the native software stack does not support.

Prior to using Spack, ARES managed its software stack with
MixDown. Thus, the ARES team already had some experience
supporting automated builds of dependencies. We developed Spack
packages for the packages in Figure 13. Many of the external
packages were already available in Spack, but some, such as Python,
required modifications to support the new platforms and compilers.

Table 3 shows configurations of ARES that the ARES team tests
nightly. The rows and columns show architectures, compilers, and
MPI versions. The ARES Spack package supports four different
code configurations: the current (C) and previous (P) production
versions, a “lite” version (L) that includes a smaller set of features
and dependencies, and a development version (D). Each cell in the
table indicates the ARES configurations built for an architecture,
compiler, and MPI combination. Each configuration requires a
slightly different set of dependencies and dependency versions, but
one common ARES package supports all of them with conditional
logic on versions and variants.

Altogether, the initial packaging effort required roughly two
months for an experienced build engineer working 20 hours per
week. This includes time spent learning to use Spack. As shown
in the table, 36 different configurations have been run using Spack
(up to 4 versions on each of 10 architecture-compiler-MPI combina-
tions). Prior to using Spack, only Linux/Intel configurations were
automated. The ARES team listed a number of key features that
enabled the increased automation:

1. Spack’s version tracking and optional dependencies were
required to build the four configurations with correct libraries;

2. The spec syntax allowed build scripts to test compiler, com-
piler version, and dependency versions concisely—a necessity
for handling the different architectures;

3. Patching packages for particular platforms was necessary to
build many packages; and

4. Using a DSL embedded in Python was a significant benefit;
certain packages required custom scripting to patch.

The ARES team also mentioned two potential long-term payoffs.
First, Spack allows the team to test with Clang. This compiler is not
currently used in production but probably will be on future LLNL
machines. Testing with Clang revealed many incompatibilities,
which were patched with Spack. The team is communicating these
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Figure 13: Dependencies of ARES, colored by type of package.

changes back to library developers, who will integrate them in future
versions. In this case, build automation has allowed more testing,
which helps both ARES and LLNL library developers build more
robust software. Second, other LLNL code teams use many libraries
that ARES uses. The LLNL code teams have begun creating an
internal repository of Spack build recipes. Leveraging this repository
will make packaging the next code significantly easier.

4.5 Limitations and Future Work

Spack’s current implementation has several limitations. As men-
tioned in Section 3.4, we use a greedy concretization algorithm.
For example, if package P depends on both hwloc@1.9 and mpi,
and if the algorithm chooses an MPI implementation for P that de-
pends strictly on hwloc@1.8, a conflict on hwloc arises. In this
case, Spack raises an error and the user must resolve the issue. Our
implementation does not backtrack to find an MPI version that does
not conflict. These cases have been rare so far. However, we plan to
add better constraint solving to Spack in future work.

While Spack supports different architectures as part of the config-
uration space, we cannot currently factor common preferences (like
configure arguments and architecture-specific compiler flags) out
of packages and into separate architecture descriptions, which leads
to some clutter in the package files when too many per-platform
conditions accumulate. We are adding features that will further
simplify Spack’s build templates for cross-platform installations.

Spack requires more disk space than a module-based system, as
otherwise identical packages with different dependencies must be
built separately. The exact space overhead depends on the structure
of the installed software; some builds can share more dependency
libraries than others (see Figure 9). In our view, the significant
reduction in complexity for the end user justifies this cost.

The use of Python has been a barrier for some users, and a major
attraction for others. For those who would otherwise create local
workarounds, Python’s flexibility has allowed them to extend local
Spack packages to suit their needs. Such customizations frequently
guide our priorities for new core features. Some users have found
the learning curve to be too steep, but this only prevents them from
packaging software. They still use Spack as a command-line tool.

In the near term, we are actively working to grow a community
around Spack and to build a larger base of contributors. We plan to
increase build robustness by deploying a continuous testing system
at LLNL. Finally, to support the growing number of HPC languages,
runtimes, and programming models, we will add capabilities to
Spack that allow packages to depend on particular compiler features.
More and more, our codes are relying on advanced compiler capa-

bilities, like C++11 language features, OpenMP versions, and GPU
compute capabilities. Ideally, Spack will find suitable compilers and
ensure ABI consistency when many such features are in use.

5. CONCLUSION

The complexity of managing HPC software is rapidly increasing,
and it will continue unabated without better tools. In this paper, we
reviewed the state of software management tools across a number
of HPC sites, with particular focus on Livermore Computing (LC).
While existing tools can handle multi-configuration installs, none of
them sufficiently addresses the combinatorial nature of the software
configuration space. None of them allows a user to compose new
builds with version, compiler, and dependency parameters rapidly.

We introduced Spack, a package manager in development at
LLNL, that provides truly parameterized builds. Spack implements
a novel, recursive spec syntax that simplifies the process of working
with large software configuration spaces, and it builds software so
that it will run correctly, regardless of the environment. We outlined
a number of Spack’s unique features, including versioned virtual
dependencies, and its novel concretization process, which converts
an abstract build DAG into a concrete, build-able spec.

We showed through four use cases that Spack is already in-
creasing operational efficiency in production at LLNL. The soft-
ware management techniques implemented in Spack are applicable
to a broad range of HPC facilities. Spack is available online at
http://github.com/scalability-1lnl/spack.
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