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Abstract—Optimizing scientific code for specific microarchi-
tectures is critical for performance, as each new processor
generation supports new, specialized vector instructions. There
is a lack of support for this in package managers and container
ecosystems however, and users often settle for generic, less
optimized binaries because they run on a wide range of
systems and are easy to install. This comes at a considerable
cost in performance. In this paper we introduce archspec, a
library for reasoning about processor microarchitectures. We
present the design and capabilities of archspec, which include
detecting and labeling of microarchitectures, reasoning about
microarchitectures and comparing them for compatibility, and
determining the compiler flags that should be used to compile
software for a specific microarchitecture. We demonstrate the
benefits that archspec brings by discussing several use cases
including package management, optimized software stacks, and
multi-architecture container orchestration.

1. Introduction

With Moore’s law waning, there has been an explosion
of new processor designs aimed at extracting every last bit of
performance out of modern numerical workloads. Intel has
added a host of 512-bit vector instructions (AVX-512) to
its processor line, AMD processors heavily utilize 256-bit
AVX2 instructions, and ARM has introduced a set of so-
called Scalable Vector Extensions (SVE) for handling vec-
tors up to 2048 bits wide. In addition to vector instructions,
specialized instructions for cryptography, persistent memory,
and other features are also beginning to appear.

While the core Instruction Set Architecture (ISA) (e.g.,
x86 64 or aarch64) typically remains stable, new exten-
sions can emerge with each new design or microarchitecture,
and it is becoming increasingly difficult to track which
processors support which extensions. To get the best per-
formance, we must optimize for specific microarchitectures,
but there is a fundamental tension between optimization and
portability. The more we optimize for a specific machine, the
less likely the code is to run on another (especially older)
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Figure 1. Performance of GROMACS 2020.1 built for different genera-
tions of CPUs.2Vertical axis shows performance expressed in ns/day, a
GROMACS-specific measure of simulation speed (higher is better).

model. Those with newer processors benefit, but shipping
optimized binaries restricts the set of potential users.

Tooling around packaging and containers has not kept
up with hardware. The system packages that underlie most
Linux distributions and container images are nearly always
built without optimization in mind [1]. Binaries are built
without any vector extensions, so that they will run almost
everywhere. Users who want to take advantage of the newest
hardware must either build the software themselves, or
know which specific, optimized packages to install. The
average user knows very little about the microarchitecture
or supported vector instructions of their machine, and all
too frequently users end up installing unoptimized software
when optimized builds are available. For optimized binaries
to be widely accessible, they must be easy to distribute.

2. GROMACS version 2020.1 was run on a dual-socket system with
two Intel Xeon Gold 6420 processors (36 cores in total), using Test
Case B from the PRACE Unified European Applications Benchmark
Suite [2]. GROMACS was installed using EasyBuild [3] version 4.3.0
and the foss/2020a compiler toolchain (including GCC 9.3.0 and FFTW
3.3.8). For each installation the entire stack was built on an appropriate
system using -march=native, and then run on the Intel Xeon Gold 6420
test system. For GROMACS the appropriate -DGMX SIMD configuration
option was used to compile it for a specific microarchitecture (for example
-DGMX SIMD=AVX 512).
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The potential performance gains of optimization are
quite significant. Figure 1 shows the performance of differ-
ent GROMACS [4], [5] builds on a dual-socket Intel Xeon
Gold 6240 system (Intel Cascade Lake microarchitecture).
A generically optimized GROMACS installation that runs
on any system supporting SSE2 is significantly slower than
installations that exploit more recent SIMD instructions.
Using AVX and AVX2 results in speedups of about 32% and
44% respectively. Compiling GROMACS for architectures
that can exploit the AVX-512 instructions supported by the
Intel Cascade Lake microarchitecture gives an additional
18% performance improvement relative to using AVX2 in-
structions, with a speedup of about 70% compared to a
generic GROMACS installation with only SSE2.

The fundamental issue is that packaging tools do not
know how to reason about compatibility. Most container
tools can select an image for the base ISA, e.g., x86 64,
but they do not optimize for specific microarchitectures (e.g.,
Cascade Lake or Skylake) on top of it. Similarly, in package
managers like RPM a user can request the AVX-512 version
of a package, usually by specifying a particular RPM name,
but the user must know that they need it. There are many
system tools that can tell what type of chip a host is, but the
information they provide is often too detailed for humans
to reason about. For example, the Linux /proc/cpuinfo
filesystem reports a model number like Intel(R) Xeon(R)
CPU E5-2695 v4, but it does not tell us that this is one of
many models supporting the Broadwell microarchitecture.

To enable optimization-aware tooling, we have devel-
oped a library called archspec, which can detect, label,
and reason about microarchitectures and their compatibility.
A user can ask for the microarchitecture of the current
machine and compare it to a label on a binary to determine
whether they are compatible. Users can ask whether a
particular microarchitecture supports certain features, and
they can ask what flags to use for a particular compiler to
build a binary specifically for a microarchitecture. We have
designed archspec to be easy to contribute to—its database
of processor information is a simple JSON file, and it is easy
to write bindings for different languages using this file. We
have so far implemented complete bindings for Python and
experimental bindings in Go. The main contributions of this
work are:

1) a conceptual framework for reasoning about com-
patibility as a directed acyclic graph;

2) a file format and schema for describing microarchi-
tecture information;

3) an implementation of our framework in the
archspec library; and

4) three detailed use cases showing how archspec can
be used in practice.

In the remainder of this paper, we describe the con-
cepts behind archspec, its implementation, and we describe
several real-world use cases for the tool. Our aim is for
archspec to be used in packaging and container tools, so
that they may easily distribute and use optimized binaries.

2. The archspec library

In this section we discuss the design and capabilities of
archspec. Its core feature is the ability to detect, label and
compare microarchitectures at the granularity with which
humans reason about them. We have chosen a set of intuitive
microarchitecture labels, e.g., skylake or thunderx2, based
on their commonly used names. We chose this level of
granularity (as opposed to specific models of the same
microarchitecture) in order to model processors at the granu-
larity that their instruction set varies. This is what determines
compatibility. We can say that a binary is compatible with
haswell and will run on any later Intel chip, and all major
compilers have flags that set the allowed instructions at
this granularity. This lets us optimize for specific processor
designs and reason about compatibility, whereas if we had
picked a finer granularity like the specific processor model,
there would be many models with essentially the same
extended ISA. As such, it is coarser than model-specific
details that one can collect from system tools but more fine-
grained than the simple distinction between ISA families,
like x86 64 or aarch64.

2.1. The Microarchitecture Database

At a high level, archspec is composed of two parts.
All the knowledge of microarchitecture names, features,
compiler support and compiler flags is stored in a JSON file,
which we call the database. On top of this static information,
archspec provides language bindings (thus far, Python and
Go) with logic to detect, query and manipulate microarchi-
tecture objects. We chose this architecture because it is easy
to contribute to—adding new microarchitectures requires
only a new entry in the JSON database—and it allows
us to easily write new language bindings on top of the
JSON database file. JSON support is widely available across
many languages, and, we plan to implement more language
bindings in the future.

The most important information contained in the
database is the dictionary of known microarchitectures. Each
entry in the dictionary maps a unique label to corresponding
information on:

• The closest compatible microarchitectures
• The vendor of the microarchitecture
• The instruction sets available
• The optimization support provided by compilers

The granularity of the labels used in archspec follows
closely that of the “machine type” employed by compil-
ers to emit processor-specific machine instructions. In fact,
resources like the GCC documentation [6] have been of
primary importance to gather information for the database.
The actual labels though might differ from the ones used
by GCC, since names for the microarchitectures have been
selected to be human readable. For instance, in archspec
we refer to the steamroller microarchitecture as opposed
to bdver3 in GCC.



{
"broadwell": {
"from": ["haswell"],
"vendor": "GenuineIntel",
"features": [
"sse",
"sse2",
"...",
"avx2"

],
"compilers": {
"gcc": [
{
"versions": "4.9:",
"flags": "-march={name} -mtune={name}"

}
]

}
}

}

Figure 2. An example record from archspec’s JSON database.

An entry for the broadwell microarchitecture is shown
in Figure 2. The from field tells us the closest compatible
labels and allows us to reconstruct a Directed Acyclic Graph
(DAG) encoding binary compatibility. We can determine
whether one microarchitecture is compatible with another
by examining its ancestors—the compatibility relationship
is transitive and one-directional. The features list contains
the ISA extensions implemented by a given microarchitec-
ture and is used by the Python bindings both for detection
and for querying, as we will see later.

The compilers field has information on the optimiza-
tion support different compilers provide for the microarchi-
tecture. This allows archspec to determine how to build
binaries specifically for this machine and whether a given
compiler version will support a particular microarchitecture.
Build systems can use this feature to query the best flags
for their machine, and to pass these flags to their compiler
of choice with microarchitecture-specific optimizations.

Currently version 0.1.1 of the archspec JSON database
contains information on 45 microarchitectures. The majority
of them is relevant in HPC contexts, due to how the project
originated and the use cases treated so far, but the design of
archspec is not tied in any way to serve only that field of
application. The addition of microarchitectures used in other
domains like, for example, embedded or mobile would not
require any change in the current model and may be part of
future releases of the project.

2.2. Microarchitecture Detection

One of the challenges of reasoning about microarchi-
tectures is that the granularity of information available
programmatically is not the granularity at which microar-
chitectures can be reasoned about. Microarchitectures are
less granular than model numbers—many models of Intel
and AMD chips have the same microarchitecture. Microar-
chitectures are more granular than machine names—the

x64 64 machine family contains a bewildering array of
different microarchitectures. The archspec library provides
a mechanism to query system information and match it with
microarchitecture characteristics in the JSON database.

On Linux systems, archspec uses information from
/proc/cpuinfo, and on MacOS it uses information from
the sysctl command. These sources give us information on
available ISA extensions, or features. The detection method
we use is dependent on the machine family.

For x86 64 systems, archspec uses the “vendor” and
“flags” data from either /proc/cpuinfo or the appropriate
data source for the operating system. We take the set of
flags read from the OS and find the microarchitecture with
the largest subset of these features. In other words, we find
the compatible microarchitecture with the most features and
use that name for the host. We map the detected host and
compiler version information to a specific compiler in the
compilers list, and we look up the build flags in this list
(e.g., for GCC, the appropriate -march flag).

For aarch64 systems, archspec uses the “CPU imple-
mentor” and “Features” information from /proc/cpuinfo
(or other OS source). Similarly to the x86 64 detection,
within each implementor’s ecosystem, the “Features” infor-
mation is compared to the canonical set of features that
define each microarchitecture. In the aarch64 case the full
set of features is indicative of the microarchitecture.

For ppc64 and ppc64le systems, archspec uses the
“cpu” information from the appropriate data source for
the operating system. The specific microarchitecture can be
extracted directly from the OS information on these systems.

2.3. Compatibility and Comparison

Microarchitectures in archspec are partially ordered by
compatibility. We say that microarchitecture A is less than
microarchitecture B if code compiled for A can run on B.
There are two reasons that this is a partial ordering:

• Separate families are not comparable.
• Microarchitecture generations are not linear within

a single family, or even a single family and vendor.

The first point simply states that, e.g., no code compiled
for an aarch64 chip will run on an x86 64 chip. The second
point is more subtle. The cascadelake and cannonlake mi-
croarchitectures are not comparable, because cascadelake
includes the AVX512 VNNI instruction that cannonlake
does not, and cannonlake includes the AVX512 VBMI and
AVX512 IFMA instructions that cascadelake does not. This
means that both of the following are false:

cascadelake < cannonlake
cannonlake < cascadelake

However, both cascadelake and cannonlake are super-
sets of skylake, and both are subsets of icelake, so both
of the following are true:

skylake < cascadelake < icelake
skylake < cannonlake < icelake
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Figure 3. Subgraph showing the partial ordering between the most recent
x86 64 CPU microarchitectures known to archspec at the time of writ-
ing, including Intel Haswell and its descendants, AMD Zen, and AMD
Zen2. The dashed line between x86 64 and haswell indicates that Intel
microarchitectures preceding Haswell have been omitted.

These relationships are shown in Figure 3 as a partial
graph including the most recent CPU x86 64 microarchi-
tectures known to archspec at the time of writing. Com-
parison operators make it easy for client code to determine
whether a binary or container labeled with one microarchi-
tecture can run safely on a system labeled with another.

2.4. Compiler Flags

In order to label binaries or container images, developers
need to be able to compile their code optimized for a specific
microarchitecture. The “compilers” information associated
with each microarchitecture entry in the JSON file enables
archspec to return appropriate optimization flags for each
combination of compiler and target.

Optimization flags are specific to both the compiler and
compiler version, to support changes to compiler flags over
time. For example: versions of the GNU C compiler prior to
version 6 do not know about the ARM v8.1-a architecture,
and versions prior to version 7 do not know about the
thunderx2 microarchitecture. Therefore, there are multiple
different ways to target thunderx2 for GCC, depending on
the compiler version.

GCC, Intel, and LLVM Clang are the compilers cur-
rently supported by archspec, with a format that enables
additional compilers to be added easily in the future. In
our experience, no previous system has aggregated this
information for all of the supported compilers in one place.

2.5. Feature Query

There is no standard for how software packages expose
their interactions with the microarchitecture to the user.
Most packages leave this entirely to the compiler and com-
piler flags used by the build system. However, many pack-
ages, particularly those with hand-tuned assembly, expose
architecture features to the user as build options (like GRO-
MACS, see Figure 1). To support this, Microarchitecture
objects in archspec can be queried for individual archi-
tecture features. Users can ask questions such as “Does
the haswell architecture contain the AVX2 instruction set?”
(yes). “Does sandybridge?” (no). This allows users to fine-
tune their interaction with the hardware up to the finest pos-
sible level of granularity, while maintaining the separation of
concerns between knowledge of the underlying architecture
(archspec) and decisions about how a specific package
builds for that architecture (the package build system).

archspec handles corner cases that OS-level feature
queries do not. For example, /proc/cpuinfo reports that
older machines have the sse3 extension, and that newer
machines have ssse3 but not sse3 even though ssse3 is a
superset of sse3. Archspec abstracts these details from the
user by reporting that machines with ssse3 also have sse3,
enabling users to write cleaner query code.

3. Example use cases for archspec

The capabilities of archspec outlined in Section 2 are
meant for a widespread use in build, packaging and con-
tainerization tools. In this section we present use cases to
demonstrate the benefits of archspec for situations that
involve, at different levels, labeling, comparing, querying
and optimizing for specific microarchitectures.

3.1. Package Management: Spack

The archspec library grew out of the Spack project,
and so we present it as a first use case. We will see how
archspec can be used by package managers to optimize
software for a specific target, record the full provenance of
the binaries and simplify the build recipes when it comes
down to microarchitecture specific choices.

3.1.1. What is Spack. Spack is a flexible package manager
that supports building multiple versions and configurations
of software on a wide range of platforms and in a repro-
ducible way [7]. There are three fundamental design choices
in Spack that make all of the above possible:

• Spack provides a domain specific language (the
“spec syntax”) to specify custom configurations;

• Package recipes are templated and provide informa-
tion on how to build a given software with many
different configurations; and

• Spack employs a constraint resolution algorithm
(“concretization”) to derive all the details of a build
that are not explicitly specified by user input.



Broadly speaking, the workflow when installing some-
thing with Spack starts with a user specifying a spec to
be installed. Spack reads this spec as input, combines it
with information from the registered repositories of package
recipes, configures a unique DAG with all the details of the
software being deployed, hashes it, and finally installs it
with full provenance. Users interested in a more in-depth
description of Spack features may refer to the tutorial [8].

3.1.2. Spack before microarchitecture support. Before
support for microarchitectures was coded into Spack the
granularity with which users or packagers could refer to
targets was that of the “broad” architecture family (e.g.,
x86 64 or ppc64le etc.). Software that optimized for mi-
croarchitecture features had to either:

1) make their interface more complex and expose
microarchitecture choices to the user, or

2) rely on generic or non-portable optimizations.

An example of the first issue is fftw, which introduced
variants so users could choose among SIMD instruction sets:

$ spack install fftw simd=avx,avx2

On the opposite side we find software that like dealii or
cp2k was using non-portable flags (e.g., -march=native) to
optimize the binaries for the current host.

It is clear that both these approaches are sub-optimal
and come with unwanted consequences. In the case of fftw
the complexity of keeping track which architecture supports
which instruction set is left to the user, while in the case
of dealii or cp2k the binaries that are produced are not
portable to hosts different from the one where they were
built. Ultimately, the absence of a mechanism to register the
target microarchitecture of a spec as part of its provenance
would hinder Spack’s ability to produce optimized code and
package it into a binary format that could be portable across
different machines.

3.1.3. Spack with archspec. archspec was designed to
provide a way for Spack and other tools to reason about
microarchitecture compatibility using a “shared language”.

Integrating the naming scheme for microarchitectures
with the spec syntax allows users to specify which microar-
chitecture they want to target with a specific installation:

$ spack install fftw target=broadwell

The full target provenance is recorded with each in-
stallation as shown in Figure 4. Since the target is now
part of the spec, packages can query it directly in their
recipes, as shown in Figure 5. The package can check itself
whether the target microarchitecture is new enough to sup-
port --broadwell-flag, and exposing specific instruction
set options as variants (e.g., with the simd variant shown in
Section 3.1.2) is not necessary anymore.

archspec is also employed to compute, for each com-
piler, the flags needed to activate the generation of binary
instructions optimized for the current target. This not only

spec:
- zlib:

version: 1.2.11
arch:
platform: linux
platform_os: ubuntu18.04
target:
name: broadwell
vendor: GenuineIntel
features:
- adx
- aes

...

Figure 4. Target provenance stored in spec.yaml for the zlib package.

def config_args(self):
configure_args = []
# If the target is compatible
# with Broadwell
if self.spec.target >= 'broadwell':
configure_args.append('--broadwell-flag')

Figure 5. Querying target compatibility in a Spack python recipe.

eliminates any need to have package recipes that inject non-
portable flags like -march=native, but also allows Spack
to warn the user if the compiler being used is too old to
optimize for the current microarchitecture (in which case
the target will be demoted to the best fit) or to error out if
the incompatible target request is explicit.

Recording the full target provenance in a binary package
allows public binary repositories to distribute optimized
binaries, see for instance [9]. From a user standpoint, this
will combine both the installation speed of binary package
managers and the optimization levels that can be obtained
from package managers installing from sources.

Finally, the semantic used by archspec to model mi-
croarchitecture compatibility will be leveraged in the fu-
ture to allow different strategies to pull binary packages
from public repositories. Users might choose for instance
to always prefer the best compatible target for which a
binary package is already available or configure Spack to
never go below a given target and install from sources
anything that is not already packaged as a binary. The base
to implement any of this is the capability to reason about
different microarchitectures that archspec provides.

3.2. Optimized Software Stacks: EESSI

archspec is a key component in the European En-
vironment for Scientific Software Installations (EESSI)
project [10], where the main goal is to provide a collection
of optimized scientific software installations that can be
leveraged on a variety of client systems, including HPC clus-
ters, personal workstations or laptops, and cloud instances,
all across different CPU families and microarchitectures,
regardless of the client’s operating system.



The EESSI project consists of three layers:

1) The filesystem layer, where the CernVM-FS [11]
provides a shared POSIX filesystem that can be
mounted via FUSE from anywhere in the world;

2) The compatibility layer, where Gentoo Prefix [12]
is used to install a minimal set of tools and libraries
in a CernVM-FS repository, to make the scientific
software stack installed on top of it independent of
the operating system of clients; and

3) The software layer, in which scientific software
applications and all their required dependencies,
including compilers and peripheral libraries for
MPI, BLAS, LAPACK, FFT, etc. are installed using
EasyBuild [3] and Lmod [13], on top of what is
provided in the compatibility layer.

The packages in the software layer are compiled for
multiple specific CPU microarchitectures, which is critical
to ensure good performance (as shown in Figure 1).

archspec is leveraged in this context in two main ways.
First, the software layer is split up into disjoint subsets,
each of which targeting a specific CPU microarchitecture,
and located in a specific subdirectory in the CernVM-FS
repository. For example, the software installations that target
systems with an Intel Haswell microprocessor are located in
the x86 64/intel/haswell subdirectory; likewise, instal-
lations for systems with AMD microprocessor of the Zen2
generation are located in the x86 64/amd/zen2 subdirec-
tory, etc. The labels for CPU microarchitectures defined
by archspec are employed here to determine in which
subdirectory software should be installed on a particular
build host, and to ensure that the naming scheme is easy
to interpret by both humans and scripts that in turns also
leverage archspec.

The other way in which archspec is used in the EESSI
project is to determine at runtime which of the subsets that
are available in the software layer should be selected for
a given client system on which the provided software will
be used. Note that this goes well beyond finding an exact
match between the CPU microarchitecture of the client and
the available microarchitecture-specific subsets: if there is no
exact match archspec can be used to automatically deter-
mine which of the available options is the best (compatible)
match, thanks to the partial ordering discussed in section 2.3.

For example: assume that software installations for Intel
Haswell, Intel Cascade Lake, and AMD Zen 2 systems are
provided through EESSI, and that a client system powered
by Intel Broadwell microprocessors wants to leverage the
provided software. Through archspec, a simple initializa-
tion script (which is included in the EESSI software layer)
can automatically determine that the installations in the
x86 64/intel/haswell subdirectory are the only compat-
ible option for this client system. On an Intel Icelake client
system however, archspec would indicate that the best
choice performance-wise out of the available options would
be the installations in the x86 64/intel/cascadelake
subdirectory, since those binaries employ AVX-512 instruc-
tions that are supported by Intel Icelake microprocessors.

feature.node.kubernetes.io/cpu-cpuid.AESNI=true
feature.node.kubernetes.io/cpu-cpuid.AVX=true
feature.node.kubernetes.io/cpu-cpuid.AVX2=true
feature.node.kubernetes.io/cpu-cpuid.FMA3=true
feature.node.kubernetes.io/cpu-cpuid.IBPB=true
feature.node.kubernetes.io/cpu-cpuid.STIBP=true
feature.node.kubernetes.io/cpu-hardware_multithreading=true
feature.node.kubernetes.io/kernel-version.full=4.18.0-211.el8.x86_64
feature.node.kubernetes.io/pci-1af4.present=true

Figure 6. Kubernetes node labels generated by the Node Feature Discovery

3.3. Multi-Architecture container builds

Using generally available packages (in the form of
container images) from an official source or a certified
provider (presented as container registries), comes with a big
caveat in relation to performance-sensitive workloads. These
packages may provide ABI compatibility at some levels,
but they are not optimized for every specialized hardware
(e.g GPUs or high-performance NICs), nor every different
CPU microarchitecture. One way to address this problem
is to compile the application packages (build the container
images) for every required architecture.

Orchestrating resource specific or performance sensitive
applications requires real time knowledge of the available
resource inventory. Kubernetes [14], the open source system
for orchestrating container workloads, presents a feature
named “Labels and Selectors“ [15]. Labels are key/value
pairs that can be attached to any object, such as nodes. By
annotating resources, we are able to deploy applications on
environments that best fit its needs or enhance its behavior,
which is becoming increasingly important. Nevertheless de-
ploying the same application over different compute nodes
can come at a performance disadvantage when it comes
to microarchitectural differences on the same CPU chip
instruction set [16]. Using the Node Feature Discovery
Operator (NFD) [17], we can automate the detection of
hardware features and configuration in a Kubernetes cluster
by labeling the nodes with hardware-specific information.
NFD will label the host with node-specific attributes. In
Figure 6 we present some of the labels generated by NFD.

The NFD Kubernetes operator does not provide the
required information that package managers like Spack re-
quire to optimize builds via compilation flags. But NFD
can be extended with sidecar containers and hooks. We have
developed a sidecar container for NFD, that will label nodes
with information provided by archspec. Named archspec-
feature-discovery [18], this sidecar container will expose
all the CPU microarchitecture information of the host. For
example:

archspec.io/cpu.vendor=GenuineIntel
archspec.io/cpu.model=85
archspec.io/cpu.family=6
archspec.io/cpu.target=skylake_avx512

The Openshift community Distribution of Kubernetes
(OKD) [19] provides a way to orchestrate image builds
based on defined events called builds. A build is the process
of transforming input parameters into a resulting object.



spec:
nodeSelector:
node-role.kubernetes.io/worker: ""
archspec.io/cpu.target: skylake_avx512

Figure 7. Kubernetes buildConfig manifest.

{
"OCIv1": {
"config": {
"Labels": {
"io.archspec.cpu.vendor": "GenuineIntel",
"io.archspec.cpu.model": "85",
"io.archspec.cpu.family": "6",
"io.archspec.cpu.target": "skylake_avx512"

}
}

}
}

Figure 8. archspec labels in an OCI image descriptor.

Most often, the process is used to transform input parameters
or source code into a runnable image. A BuildConfig object
is the definition of the entire build process.

The missing part for building hardware-specific images
is to orchestrate the build process over the different available
resources. Kubernetes labels are a grouping primitive, that
can be used to group or processes by label equality. By
adding a nodeSelector stanza in the buildConfig manifest
the client/user can define a set of labels/nodes where to run
the image build (Figure 7).

By adding the above snippet to a Kubernetes job mani-
fest, we constrain any pod created by that job to be allocated
on nodes labeled with the desired label.

3.4. Custom image labels

Another approach is to annotate the microarchitecture
in the image itself. The open containers initiative (OCI),
version 1 image specification [20] comes with a property
OCIv1.config.Labels that allows users to add metadata
to an image. An image label is a key-value pair and must
follow the OCI annotations rules [21]. Canon and Younge
2019 [16] proposed to store the architectural details of
packages inside the container, such as processor features,
whether the container application requires a specific glibc,
MPICH support, or CUDA driver on the host in order to run.
Tools like buildah [22] allow users to add labels to images
once they are built. buildah can then be used in conjuction
with archspec to create labels than will be stored as image
metadata. Following the example from the previous section,
the labels stored in an image config will look as shown in
Figure 8.

Finally, it should be noted that in principle archspec
could also be used to have an OCI image index [23]
reference multiple image manifests, each optimized for a
different microarchitecture. Investigating this approach in
more detail is under consideration.

4. Related work

archspec’s key differentiators are its ability to reason
about compatibility using comparators, its database of com-
piler flags, and its language-agnostic JSON model. These
features allow it to fit easily into toolchains for packaging
or container management, and to be used as an aid for
distributing, selecting, and using binary packages.

Existing tools aim to detect the underlying architecture
or to enable different types of microarchitecture-specific
code to be used at runtime. For example, the CPUID [24]
tool queries the CPUID bits on Intel, AMD, and other
vendors’ processors, and returns a feature set and a processor
name. There is no structure beyond this, and the library
does not know the compatibility relationships among chips.
Google’s cpu features library [25] similarly provides
logic for detecting feature information from various OS data
sources, but it does not map this information to specific
microarchitectures. While it does allow client code to detect
whether a compiler has been passed a microarchitecture-
specific optimization option, it does not provide archspec’s
database or any way to look up options for a compiler.
The user is still responsible for build configuration. Both of
these are informational runtime libraries; they do not provide
archspec’s rich DAG-based compatibility model.

gcc and the glibc dynamic loader, ld.so have some
archspec-like features built in. In particular, ld.so has a
multilibs [26] feature that allows users to build multiple
versions of the same library and deploy them in different,
microarchitecture-specific subdirectories under any normal
library search path. This allows vendors to build libraries
for multiple architectures and deploy them together, similar
to a fat binary but with dynamic ld.so support and separate
files. gcc provides a mechanism that is similar in spirit
– it allows different microarchitecture-specific versions of
the same function to be labeled, compiled into the same
binary, and dispatched dynamically at runtime based on
the host [27]. This approach is likely the most robust.
It allows the most important functions in a library to be
optimized separately for specific platforms, and it allows a
single binary to work well across environments. However,
this approach is also the most invasive, as the user must
instrument their library with compiler-specific features and
code variants. We use archspec to enable solutions that
work for all compilers and unmodified binaries.

Optimized binary distribution is also being investigated
in other ecosystems. The Julia community has modified their
BinaryBuilder tool to support microarchitecture-specific
optimizations and their own labeling scheme for CPU fea-
tures [28]. The glibc community is investigating a coarser
set of architecture levels [29], which they hope will reduce
the number of microarchitectures that need to be consid-
ered for optimized builds. These are essentially “synthetic”
microarchitectures – chosen because they balance compati-
bility and performance well. We may consider adding these
to archspec as additional nodes in the DAG, which would
allow for direct comparison between gcc’s coarse levels and
detected host architectures.



5. Future work

archspec currently models CPU compatibility, but we
also aim to model other hardware features. In particular,
GPU compatibility and networking interfaces cause many
headaches for HPC binary distribution. Shipping binary ar-
tifacts that are portable across GPUs and networking devices
is non-trivial [16], and we hope to enable tools to reason
about these aspects just as we have done for the CPU.

In addition to this, we are looking into adding more
“virtual” microarchitectures to our database. We currently
model real CPUs, but ARM provides versioned ISA spec-
ifications, like armv8-a or armv8.1-a, and glibc appears
to be adding similar concepts with their “levels” of x86 64
support. We will consider adding these generic targets and
their compiler information to our database, as they provide a
good balance between optimized, microarchitecture-specific
builds and more widely distributable binaries.

6. Conclusion

The diversity of modern microarchitectures is growing
rapidly, and with the death of Moore’s law it will become
increasingly important to exploit the ISA extensions on these
new chips. However, without better tooling that can reason
about compatibility, the average user will never see these
benefits. Packaging and container tools are needed that can
reason about microarchitecture compatibility and select the
fastest available binary for a given host. We have presented
the archspec library, which provides a DAG-based compat-
ibility model for CPU microarchitectures. It enables simpler
querying and simpler building of binaries, as it encapsulates
feature compatibility information as well as the compiler
flags needed to exploit these features. It provides essen-
tial comparison features that container runtimes, package
managers, and orchestrators can use to compare builds –
something no existing tool provides. It is our hope that
archspec will be picked up by the packaging and container
communities and used to enable the use of optimized bina-
ries for a much broader range of users. archspec is available
online at https://github.com/archspec/archspec.
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